Simulations for Design and Usability Testing at Norwegian Centre for EHR

Dag Svanæs

Department of computer and information science

NTNU

Trondheim, Norway

What is usability?

Jacob Nielsen 1993:

- What was wrong with Nielsen's definition?
 - It is context free
- ISO 9241-11 (1998) defines usability:
 - The effectiveness, efficiency, and satisfaction with which specified users achieve specified goals in particular environments".

ISO 9241-11 (1998) defines usability:

"The

- effectiveness,
- efficiency, and
- satisfaction

with which

- specified users achieve
- specified goals in
- particular environments"

ISO 9241-11 (1998) defines usability:

"The

- effectiveness, efficiency, and
- satisfaction

Dependent variables

with which

- specified users achieve
- specified goals in
- particular environments"

What should be measured?

Effectiveness

- Task completion
- Are the users able to perform the intended tasks on the computer?

Efficiency

- Completion time
- How much time is needed on the computer to get the tasks done?

Satisfaction

- Subjective assessment of the "user experience"
- How is the system assessed and described by the users?

ISO 9241-11 (1998) defines usability:

- "The
 - effectiveness,
 - efficiency, and
 - satisfaction
- with which
 - specified users achieve
 - specified goals in
 - particular environments"

Context of use

Evaluation example: Eating utensil

• Problem: Assess the usability of these three product

Three products in three contexts of use

A usability matrix

OK	+/-	X
+/-	OK	
	+/-	OK

Usability vs. other properties

- Usability is not an objectively measurable property of a system or object.
- Only meaningful if we know the answers to the three questions:
 - Who are the users?
 - What do they intend to use the product for?
 - Where and in what social context do they intend to use it?
 - → Usability is context dependant.

"Context of use"

Consequences for Health ICT

Who, what, where:

- Who are the users?
 - Access to real users. Doctors, nurses, patients, administrators, visitors
- What are the tasks?
 - Detailed understanding of medical work.
 Cognitive, workflow, roles,,,
- Where
 - Physical and social context of use. Other people.
 Paper. Other systems,,,

Traditional usability tests

A "desktop" usability test is a simulation of an office.

From usability test of "Xerox Star" 1979.

Medical work

National health informatics research center (NSEP) in Trondheim, Norway

- National research center established in Trondheim in 2004. Funded by the Norwegian Research Council.
- Focus on system integration, user involvement, field studies of EMR use, and mobile EMR.
- Includes a usability lab for testing both desktop and mobile EMR systems.

Usability lab with mobile walls

Control room

The lab in use

Health workers in a simulated ward

Recording and analysis (Noldus++)

Equipment

Cameras

Wireless microphones

Wireless cameras

WLAN/IP "Mirroring" of PDA and PC content

""Mirroring" with KVMs

Cameras

Bringing in the developers

Getting the environment right

- The use of PDAs to control patient terminals
- 8 different user interfaces
- Scenario: Pre-surgery patient visit
- Environment: By patient bed

Factors affecting the usability

- GUI-design of screen
- GUI-design of PDA
- Shared screen
- Information hiding
- One hand, two hands
- Level of disruption to physician-patient eye contact.

Factors affecting the usability (ranking)

- GUI-design of screen
- GUI-design of PDA
- Shared screen
- Information hiding
- One hand, two hands
- Level of disruption to physician-patient eye contact.

Context of use: Environment

Implications for testing and design

- The physical and social aspects of the use environment have a strong effect on observed system usability.
- Usability testing:
 - The physical and social environment must be simulated in great detail.
- Designing for usability:
 - Detailed knowledge of physical and social environment is necessary.

Getting the scenario right (goals/tasks)

Usability testing of a CPOE module

 Cooperation between research center, hospital and vendor/developers

- -2007:
 - Developing use scenarios
 - Baseline test
- **2008:**
 - Usability testing of first version of CPOE system

Scenario for testing CPOE system

Users:

One physician,

One nurse

Three patients (actors).

Scenario:

Pre visitation meeting

Visitation round

Documentation

Administration of medications

Patient stories

EHR content

All relevant paper-based records

Full-scale usability test / workflow simulation

Lessons learned: Scenarios and goals

- Complex workflow
- Important to include health workers in the design of the use scenarios
- Patient data needs to be medically correct
- Realism concerning scenarios and goals makes it easier for the users to accept the illusion.

Flight simulator: Test vs. Simulation

- What is the necessary level of realism?
- For what purpose?
 - Entertainment
 - Training
 - Evaluation

NASA's Boeing 747 simulator

- Is this "overkill"?
 - Simulation research indicates that too much realism actually impedes learning.
 - Simple mockups work perfectly for a number of pilot training situations.
 - Full-scale simulators are necessary for some training exercises.

Just-enough realism

- Comparative usability study of a handheld retail application.
- Three test environments compared.
- Comparison of usability errors identified.
- Suggestion for just-enough realism.

Master thesis Kenneth Devik, NTNU 2009

Scenario: Retail inventory

- PDA with barcode reader.
- Running prototype.

Three usability tests

Desktop lab test

Full-scale lab test

Field test

Results

- False positives in desktop test.
- Full-scale lab test of value.
- Little added value of field test.

False positives

• False positives: Problems with the barcodes used in the test. Not a real problem!

Just-enough realism

- Identify the critical elements.
- In this case:
 - Standing, not sitting.
 - Real items."
 - More than one item.
 - Docking station out of sight.

