
Region Hovedstaden

Simulation of IT-systems in the ITX laboratory, Region H

Agenda

- The IT Experimentarium
 - Objectives
 - Method used
- Results
 - What have we done so far?
 - What is our experience?
- Discussion
 - How can simulation be used in developing health it?
 - How can simulation be used for assessing usability in health it?
 - How can simulation be used for assessing implementation aspect such as need for instruction and information?

Conclusions

The IT Experimentarium (ITX)

Background

- Many it-systems implemented in the Danish hospitals
- Lack of sufficient ability to support and cooperate with clinical work processes
- Use of it-systems are different than expected
- New unintended accidents and adverse events.

Need of a another way of assessing the usability and effectiveness of clinical it-systems

Objectives

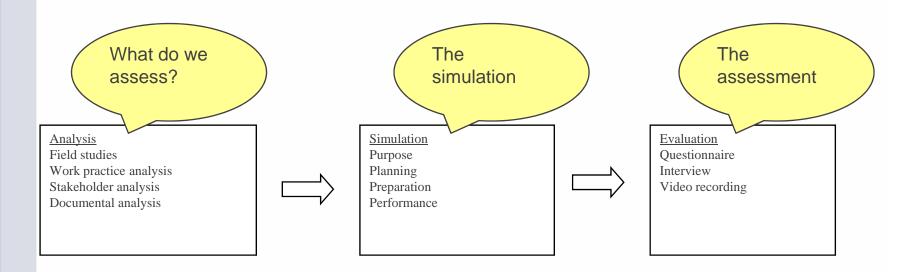
- 1. More focus at interaction between humans, organisation and technology
- 2. More focus on the human limitation in use of technology
- 3. Comprehension of risk for new adverse events by use of simulation of work practice in realistic clinical environment

The overall objective is to improve the quality of the clinical it-systems before implementation at the hospitals

IT Experimentarium

Established in 2007 by Cooperate IT

- In cooperation with
 - The Danish Institute for Medical Simulation
 - Patient safety unit



13 simulation rooms, Herlev Hospital, Copenhagen

- Ordinary ward rooms, intensive care, operating room
- Medication room
- Video camera, loud speakers, microphones
- Observation rooms
- Computer controlled dulls used for simulation

Assessing health-it by use of simulation

Analysis

- Field studies
- Work practice analysis
- Stakeholder analysis
- Documental analysis



Simulation

- Purpose
 - Analyse, identify, create mutual understanding.....
 - Has to be very specific and clear
 - Provide the basis for the simulation.
- Planning
 - Scenarios
 - Number of tests
 - Participants
 - Clinical set up
 - Technical set up
 - Test data

Simulation - preparation

- Clinical and technical set up
- Role definition
 - Instructor
 - Test coordinator
 - Technician
 - Observers
 - Patients or simulation dull
- Introduction
 - Simulation & it-system

Evaluation

Questionnaires & Interview guide

Dry run

Sanne Jensen

Simulation - performing

- Introduction
 - Simulation & it-system
- Setting the scene
- Simulation
- •Communication between simulation room and observation room

Evaluation

- Debriefing
- Questionnaire
- Interview
- Video recording

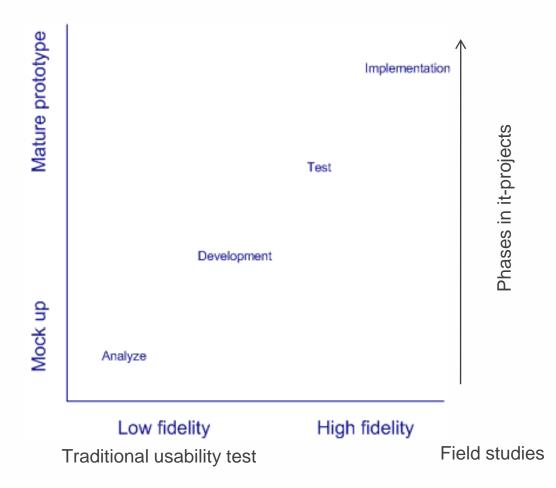
Test report

What have we done so far?

During the last 2 years – 8 assessments

- CPOE (EPM)
 - Assessment of new functionality and work practise
 - Assessment of need for introduction and training
- Templates for input of clinical data (SFI skemaer)
 - Development
 - Assessment of functionality before implementation
- Patient safety system used during surgery (CAPSIS)
 - Assessment of functionality
- Telemedicine for patients with COPD (BERTA)
 - Assessment of usability
- Medication between primary and secondary care (FMK)
 - Assessment of functionality and work practise
- Decision support for medication (PSIP)
 - development

3 more assessments are planned

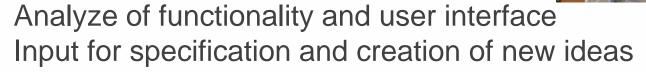

What is our experience so far?

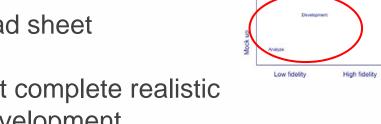
- The method is useable
 - Profitable evaluation from clinicians and experts
 - Input for development
 - Knowledge concerning
 - work practice & organizational issues
 - Implementation aspects such as training and introduction
- Simulation is very time consuming
 - Test resources are a challenge
 - Test need to be planned from the start
 - Planning and preparation takes a lot of time

Adjustments depending on the circumstances and purpose for the assessment

Use of simulation in different context

How can simulation be used in developing healt it?


PSIP project


- Mock up build by a spread sheet
- Limited functionality
- •Clinical environments not complete realistic
- Many input for further development
- Scenarios can be a challenge

SFI

- Use of partly mature prototype
- No integration
- Many input for further development

How can simulation be used for assessing usability in health-it?

Telemedicine for patients with COPD

- Input concerning organizational topics
- Assessment of usability
- Participation of patients is feasible
- •Input for further development
- Structural test

Capsis

- •Surrounding work flow to be taken into account
- •Support of work flow new functionality
- Assessment of usability and effectiveness
- Realistic simulation
- Knowledge of work practice is crucial

Assessment of usability and effectiveness Input for specification and support of work practice

How can simulation be used for assessing implementation aspect?

CPOE (EPM1) – new functionality for PDA

- Support of work flow
- Introduction to EPM
- Interruptions
- Communication with patient
- Handling of PDA

- Development

 Analyze

 Low fidelity High fidelity
- •CPOE (EPM3) consolidation of CPOE
- Assessment of different versions
- Need of introduction and training
- Assessment of usability
- Need of information

Assessment of support of work practice

Knowledge of need for introduction and information
The 21st of October 2009

Use of simulation

Analy sis	Specific ation	Develop ment	Organisation Implement.	Produc tion	Simulation of work practice and use of it in clinical environment
х	Х	Х	x	х	Test of usability of health it; software and hardware
			х	х	Assessment of materials for education and introduction
			х	х	Assessment of need for information and introduction
х	х	Х	x	x	Optimizing of existing work practice
х	х	Х	х	х	Identification of need for new work practis
			x	x	Visualization of potential or existing adverse events
			Х	х	Test of plans for back up

Conclusions

By assessing it-systems in simulated clinical surroundings we are able to

- Gain knowledge of the impact at work practice
- Visualize and optimize new workflows
- Qualify IT training of and information to clinicians
- Create a mutual understanding between itdevelopers, healthcare informatics and end user
- Analyse and assess health-it in controlled environments
- Create environments very similar to reality

Test usability, effectiveness and usefulness

The IT Experimentarium

sanne@regionh.dk www.regionh.dk/ITX